

Getting Started with

the PKWARE Smart

Encryption API

▪ C++

▪ .NET

▪ Java

PKWARE Inc.

Contents
Securing Your Data: An Overview .. 3

Basic Passphrase Encryption ... 3
Encrypting Structured Data ... 4
Confirming Identity through Digital Signatures ... 4
Validating Digital Signatures ... 4

Introduction to Field Level Encryption ... 4
What is Field Level Encryption? ... 5

Field Level Encryption: A Guide for Java and C# Developers 5
Encrypting an Object ... 5
Decrypting an Object .. 6
Method Reference .. 6

Field Level Encryption: A Guide for C++ Developers ... 8
Encrypting an Object ... 8
Decrypting an Object .. 8
Method Reference: PKSymmetricEncryption ... 9

Introduction to Format Preserving Encryption ... 9
Basics .. 10
Method Reference .. 12

Creating and Verifying Digital Signatures:
 A Guide for .NET and C++ Developers ... 15

.NET/C# Method Reference: PKArchive.Net ... 15
C++ Method Reference: PKSignVerify .. 16

Creating and Verifying Digital Signatures: A Guide for Java Developers 18
Method Reference: Java ... 19

Glossary of Cryptographic Terms .. 20

User Help and Contact Information .. 20

file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593630
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593631
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593632
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593633
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593634
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593635
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593636
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593637
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593638
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593639
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593640
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593641
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593642
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593643
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593644
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593645
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593646
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593647
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593648
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593648
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593649
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593650
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593651
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593652
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593653
file:///C:/Users/Shivani.Gupta/Downloads/SDK-doc-Getting%20Started%20with%20SmartEncryptionAPI.docx%23_Toc418593654

Securing Your Data: An Overview

The PKWARE Smart Encryption Application Programming Interface (API) offers you and

your development team several ways to encrypt and secure data. This guide will help

you understand and use the tools available to you, You’ll also see where to look for more

advanced information.

This guide starts with an overview of the principles underlying the encryption tools

included with the Smart Encryption API:

• Passphrase-based encryption

• X.509 certificate-based encryption

• Encrypting structured data

• Using digital signatures

Following this overview, find the sections that apply to the programming language(s)

you write with. You’ll find samples to learn the basic processes to sign and encrypt data.

Much of the reference information here is from the US National Institute of Standards

and Technology. The NIST Computer Security Resource Center web site,

http://csrc.ncsl.nist.gov/, contains FAQs and documentation relating to computer

security. The PKWARE web site, www.pkware.com, also contains information relating to

security in SecureZIP.

Basic Passphrase Encryption

Encryption provides confidentiality for data. Unencrypted data is called plaintext.

Encryption transforms the plaintext data into an unreadable form, called ciphertext,

using an encryption key. Decryption transforms the ciphertext back into plaintext using a

decryption key.

A passphrase uses letters, numbers, spaces and other non-alphanumeric symbols to

allow your recipient to open your encrypted file or message. The passphrase used to

encrypt a file with the PKWARE Smart Encryption API may be from 1 to 260 characters in

length. Files are encrypted using either the 3DES or Advanced Encryption Standard

(AES) algorithm. If you use a passphrase to encrypt, anyone who knows the passphrase

can decrypt.

Different passphrases may be used for various files, although only one passphrase may

be specified per run. To maintain the confidentiality of the data encrypted by a key, the

key must be known only by the entities that are authorized to access the data.

The passphrase is not stored, and as a result, care must be taken to keep passphrases

secure and accessible by some other source.

Password vs Passphrase?

Far too many people choose not-very-secure passwords. These passwords are either too
easy for others to guess (repeated public shaming has not kept dictionary words like
password or standard number sequences like 123456 from being the most popular
passwords), too hard for you to remember, or used everywhere (meaning if you know one
password, you just might know them all). For these reasons, many security professionals
use the term passphrase when referring to symmetric keys. This guide follows that
convention.

What makes a passphrase different from a password? There is no dictionary definition, but
in the English language, phrase suggests “multiple words that go together, but do not
form a compound word.” An effective passphrase could combine a flavor or seasoning
with a farm implement, or an adverb. The longer the passphrase, the more secure it is.
Thus you could string all these together: flavoragriculturalimplementseasoningadverb.

http://csrc.ncsl.nist.gov/
http://www.pkware.com/

Stronger still with numbers or non-alphanumeric characters, preferably not in spots that
separates the “words.”

Encrypting Structured Data

One reason organizations are reluctant to encrypt the contents of individual database

fields is that the encrypted version of a field often has many more characters than the

original, unencrypted data. This can lead to changing field length limits or data types in

ways that would not otherwise make sense.

The PKWARE Smart Encryption API allows applications to encrypt and decrypt structured

data in one or more database fields without changing the length of the fields. The class

uses strong encryption with the Advanced Encryption Standard (AES) algorithm in

Cipher Feedback (CFB) mode so that other encryption tools should be able to decrypt the

data encrypted with the Smart Encryption API. See “

Introduction to Field Level Encryption” for more information on this process.

Confirming Identity through Digital Signatures

A digital signature is an unforgeable mechanism that ensures that the file to which it is

attached originates from the owner of the signature and is unchanged since it was

signed. The private key from a user’s digital certificate is used to attach a digital

signature. The signature is authenticated by application of the public key from the

certificate.

Authentication is a separate operation from data encryption. Whereas encryption is

concerned with preventing parties from accessing sensitive data (such as private medical

or financial information), authentication confirms that information actually comes

unchanged from the purported source.

Authenticating digitally signed data both verifies the signature and validates the signed

data.

Validating Digital Signatures

The Smart Encryption API makes use of certificate-based encryption within the public

key infrastructure (PKI) to generate and validate digital signatures.

The API provides a means to access the supported (X.509) certificate keys necessary for

signing and authentication.

Be aware of these relevant details in Smart Encryption API support for digital signatures.

• The Smart Encryption API supports only RSA keys for X.509 certificate signatures.

• PKI provides an authentication chain for X.509 certificates to guarantee that the

signature was created by the purported source.

• Additional facets of validating a certificate’s viability for use include a defined

range of dates within which a certificate may be used and whether the certificate

has been declared to have been revoked.

Introduction to Field Level Encryption

This guide will help you understand and implement field level encryption through the

Smart Encryption API.

The API supports field level encryption in these languages:

• Java

• C++

• C#

Syntax will differ among these languages, but this guide will focus on the tasks. See the

generated Help system for language-specific information.

What is Field Level Encryption?

Field level encryption (FLE) helps to ensure you can encrypt structured data while

preserving its length (the number of characters in the table cell) and data type. If you

have a database column filled with nine-digit US Social Security numbers, standard

strong encryption adds characters to hide real data. Too often, this forces your

organization to choose between security and a bloated database, as the encrypted data

violates any character limits you have for database cells. FLE resolves this dilemma,

because it will replace those nine digits with nine other characters (including non-

printing characters).

Use the Smart Encryption API whenever you need to protect personally identifiable data

(including credit card numbers, medical patient numbers, and Social Security numbers)

stored in a database.

If you need security with more convenience, this API also allows you to preserve the

layout/format of this data as well. See “Introduction to Format Preserving Encryption”

later in this document.

In the next sections, you’ll learn how to use the Smart Encryption API in the supported

programming languages.

Field Level Encryption: A Guide for Java and C# Developers

Encrypting an Object

Create an encryption object

1) (Java only) Create a length preserving encryption object:

public LengthPreservingEncryption()

2) Identify the encryption key you want to use:

a) Use an existing key

b) Generate a random encryption key with generateRandomKey128,

generateRandomKey192, or generateRandomKey256. The longer the key, the stronger

the encryption. Syntax will vary, depending on your language. You will need to

store this key somewhere, such as a separate column in your database table.

Note that if you store the key in the database, you must encrypt the key.

c) Derive key from passphrase

3) Generate a random initialization vector (IV) with generateRandomIV. An IV is a random

set of characters included in the encrypted file that does not allow an attacker to

infer relationships between segments of the encrypted data. You will need to store

this IV somewhere, such as a separate column in your database table.

4) To encrypt any byte array, use encrypt:
Public static byte[] encrypt (byte[] key,
 Byte[] iv,
 Byte[] data)

If you don’t need to preserve lengths in your encrypted objects, you may also use
encryptString, encryptStringBase64, or encryptStream with keys and IVs in place of

encrypt. See the Method Reference for more information.

Decrypting an Object

Use decrypt to allow your authenticated users to work with the actual data.

1) Identify the encryption key used to encrypt this data with either of these methods:

a) Use an existing key

b) Derive key from passphrase

2) Identify the Initialization Vector (IV). An IV is a random set of characters included in

the encrypted file that does not allow an attacker to infer relationships between

segments of the encrypted data. The IV is generated when encrypting and stored in

an accessible place. You must use the same IV used to encrypt the data you want to

decrypt.

3) Use decrypt to view the encrypted data:
Public static byte[] decrypt (byte[] key,
 Byte[] iv,
 Byte[] data)

Method Reference

The following table contains the available methods for the array encryption/decryption

class for Field Level Encryption. The table shows the Java methods. If you work with C#,

you will find that the commands are similar, with different capitalizations. Use the Help

system to clarify any issues.

Method Description Parameters

generateRandomKey128 Generate random key material for
AES128

generateRandomKey192 Generate random key material for
AES192

generateRandomKey256 Generate random key material for
AES256

generateRandomIV Returns random initialization vector (IV)

encrypt Encrypt byte array using specified key
material and IV

key - Key material, array must be

either 16 bytes, 24 bytes, or 32
bytes

iv - 16 byte initialization vector

data - Data to encrypt

decrypt Decrypt byte array using specified key
material and IV

key - Key material, array must be

either 16 bytes, 24 bytes, or 32
bytes

iv - 16 byte initialization vector

data - Data to decrypt

encryptString Encrypt a string converted to UTF-8
using the specified key material and IV
to a byte array. Depending on the
original character set, this method may
preserve the original length.

key - Key material, array must be

either 16 bytes, 24 bytes, or 32
bytes

iv - 16 byte initialization vector

data - String to encrypt

Method Description Parameters

decryptString Decrypt a string using the specified key
material and IV to a byte array

key - Key material, array must be

either 16 bytes, 24 bytes, or 32
bytes

iv - 16 byte initialization vector

data - String to decrypt

encryptStringBase64 Encrypt a string converted to UTF-8
using the specified key material and IV
and return the encrypted data as a
Base64 string

key - Key material, array must be

either 16 bytes, 24 bytes, or 32
bytes

iv - 16 byte initialization vector

data - String to encrypt

decryptStringBase64 Decrypt a string using the specified key
material and IV

key - Key material, array must be

either 16 bytes, 24 bytes, or 32
bytes

iv - 16 byte initialization vector

data - String to decrypt

encryptStream Creates a stream that will encrypt data
as it is written to the stream (Java only)

key - Key material, array must be

either 16 bytes, 24 bytes, or 32
bytes

iv - 16 byte initialization vector

outputStream - Stream where

the encrypted data will be written

CreateEncryptionStream (C#) Creates stream that encrypts
everything that is read from it or written
to it.

stream - The stream on which

to perform the cryptographic
transformation.
mode - Indicates if stream is

intended to be read from or written
to.

key - Key material

iv - Initialization vector

decryptStream Creates a stream that will decrypt data
as it is read from the stream (Java only)

key - Key material, array must be

either 16 bytes, 24 bytes, or 32
bytes

iv - 16 byte initialization vector

inputStream - Stream where

the encrypted data will be read

CreateDecryptionStream (C#) Creates stream that decrypts
everything that is read from it or written
to it.

stream - The stream on which

to perform the cryptographic
transformation.
mode - Indicates if stream is

intended to be read from or written
to.

key - Key material

iv - Initialization vector

deriveKey256 Derive key material for AES 256 from
the password using PBKDF2

password - Password used to

derive the key

salt - Salt used to derive the

key. Must be at least 8 bytes.

iterations - Number of

iterations for the operation. Must
be greater than 0. Default: 50000

Method Description Parameters

deriveKey192 Derive key material for AES 192 from
the password using PBKDF2

password - Password used to

derive the key

salt - Salt used to derive the

key. Must be at least 8 bytes.

iterations - Number of

iterations for the operation. Must
be greater than 0. Default: 50000

deriveKey128 Derive key material for AES 128 from
the password using PBKDF2

password - Password used to

derive the key

salt - Salt used to derive the

key. Must be at least 8 bytes.

iterations - Number of

iterations for the operation. Must
be greater than 0. Default: 50000

Field Level Encryption: A Guide for C++ Developers

Encrypting an Object

Create an encryption object

Use this command to create a length preserving encryption object:

extern PKSymmetricEncryptionPtr pkSymmetricEncryption(PKSession* pSession,
PKKeyMaterial* pKeyMaterial, LPCBYTE pbIV = NULL, PKUINT32 cbIV = 0, PKUINT32 alg =
CALG_AES_256, PKUINT32 mode = PK_ENCRYPT_MODE_CFB);

The pSession parameter creates the object, and pKeyMaterial identifies the encryption

key. Choose the strength of your encryption algorithm (CALG_AES_128, CALG_AES_192, or

CALG_AES_256) with the alg parameter.

Select an encryption mode from this list:

• Cipher Block Chaining (PK_ENCRYPT_MODE_CBC)

• Cipher Feedback (PK_ENCRYPT_MODE_CFB)

If you choose to use an initialization vector (IV), you need to identify this vector (pbIV)

and its size (cbIV). An IV is a random set of characters included in the encrypted file that

does not allow an attacker to infer relationships between segments of the encrypted

data.

Encrypt the Byte Array

There are several ways to encrypt a byte array, described in the help. To use encrypt:

virtual PKUINT32 encrypt(LPCBYTE pbInput, PKUINT32 cbInput, PKBuffer& output) = 0;

Decrypting an Object

Use decrypt in the same manner as above to allow your authenticated users to work with

the actual data. When decrypting, one must use the same key and initialization vector as

was used for encryption.

Method Reference: PKSymmetricEncryption

Method Description Parameters

encrypt Encrypt byte array pbInput - Data to encrypt

cbInput - Size of data to encrypt

output - Output buffer to receive

encrypted data

decrypt Decrypt byte array pbInput - Data to decrypt

cbInput - Size of data to decrypt

output - Output buffer to receive

decrypted data

encryptBase64 Encrypt byte array and encode as
Base64

pbInput - Data to encrypt

cbInput - Size of data to encrypt

output - Output buffer to receive

encrypted and encoded data

decryptBase64 Decrypt a string using the specified key
material and IV

pbInput - Data to decode and

decrypt

cbInput - Size of data to decode

and decrypt

output - Output buffer to receive

decoded/decrypted data

PKSymmetricEncryptionPtr Smart pointer to the symmetric
encryption/decryption object

pSession - Session object

pKeyMaterial - Key material

pbIV - Initialization Vector

(optional)

cbIV - Initialization vector size

(optional)

alg - Algorithm

mode - Encryption mode

Introduction to Format Preserving Encryption

Every day, thousands of people visit your company’s website to do business and access

information. Financial transactions and other interactions with personally identifiable

private information pass through constantly. Your online store allows customers to

register their personal information, including credit card numbers, addresses, and

birthdates. They access their account information with a username and passphrase. All

of this information is quite valuable for identity thieves and ordinary thieves.

Encrypting your database files certainly raises the security level, but reduces the

performance of your site, when milliseconds count for online customer satisfaction. With

the Smart Encryption API, you can focus encryption on specific fields while preserving

various aspects of the original data.

Using Format Preserving Encryption (FPE) foils attackers by displaying the encrypted

text (called ciphertext by cryptographers) using the same format as the original data

being encrypted. That is, a legitimate 16-digit credit card number is replaced by 16

random digits in the database. A separate key is needed to decrypt and use the actual

credit card account. See the figure below.

Basics

To add format preserving encryption to your application, call the public class

FormatPreservingEncryption. Syntax may vary among the supported languages. Identify

the field you wish to encrypt as byte [], and the secret key to encrypt with.

You can use the Smart Encryption API to encrypt and decrypt fields in your application.

Your application can run as part of an account management form, and interact with your

database.

Better Security with Tweaks

The data will be encrypted or decrypted using the key supplied by the caller when this

object is created. The caller should also provide a tweak value for each encrypt or

decrypt operation. The tweak value should be unique to a field or row to strengthen the

encryption.

A tweak is a number or a text string that is used on every encryption or decryption to

choose a different permutation of values on each instance. Essentially it converts the

common AES key used by all the data to a customized key; a different key for each

instance of data. The tweak changes the permutation of values – instead of 10000

becoming 511 for all employees, it may become 6789 for one employee, 12 for another,

and 9847 for yet another. By making every employee store its salary with a different

tweak value, it means that each employee’s data is effectively encrypted with a different

key, producing a different permutation. Knowing anything about one permutation does

not help an attacker figure out other permutations.

Unlike the AES key, the tweak does not need to be a secret. You can make the tweak

completely public and it won’t help an attacker. This is because the relationship between

a tweak and the permutation that results is wildly unpredictable. Changing even one bit

in a tweak produces an altogether new permutation.

The tweak is a way of choosing a random permutation. The more tweaks we use, the

more unlikely it is that two permutations are the same. This makes it unlikely that an

attacker who gains some knowledge about some of the data can make any good use of

that to decipher the rest of the data.

Traditional block ciphers and hashes use long, random strings of data (initialization

vector [IV] or salt) in a similar way as we’re using a tweak here. The difference between

a tweak and a salt is that the salt is chosen randomly on each encryption and stored

along with the encrypted value – it is still public knowledge, but not predictable or

similar to any previously used salt (we hope). A tweak is also unique (hopefully) but not

random – it is reproducibly derived from some intrinsic information about the data being

stored and then (internally) generates the same effective random salt value to use as

part of the encryption. You supply the tweak – and the library regenerates the salt each

time. Since the goal of format preserving encryption is to not make you need more

space to store ciphers, a tweak is a better solution than a long random string (IV or salt)

which must also be stored with the cipher.

In fact, the best set of tweaks are those where every item you store uses a different

tweak, and thus has the strong chance to pick permutations at random. Further, it is

ideal if each time you update a value, you choose a new tweak, so that a given tweak is

never used twice, ever. In practice, this may be difficult. If you have nowhere to store a

variable tweak in your data model, then you’re pretty much only able to construct a

tweak from the existing data. However, this is still a great improvement in security.

Choosing a Tweak Value

So how do you go about choosing a tweak? Well, if every row in a database has a

different row id (id) and every column has its own table name and column name, then a

concatenation of those three things is an excellent tweak! Example: For a table called

Customers, column called “CreditCard”, row id 33, a perfectly great tweak is

“Customers.CreditCard.33”. In most real-world scenarios, this is easily computed for any

given use case.

Example: Securing a Customer Database

Your online store allows customers to register their personal information, including credit

card numbers, addresses, and birthdates. They access their account information with a

username and passphrase.

Create an encryption object

1. Create a format preserving encryption object:

Public FormatPreservingEncryption (byte[] key)

You can define the key value, or use the SHA1 algorithm by declaring the key

value null.

1. Call encryptCreditCardNumber with the two required parameters:

o value is the unencrypted credit card number

o Add the tweak value. This should differ with each record or field (see

“Choosing a Tweak Value”), but once defined should never change.

2. The function will verify the Luhn checksum to ensure that the number entered is

a valid credit card number, then encrypt the data. It will return an encrypted

value in the same format, with a valid Luhn checksum.

Decrypting an object

Use decryptCreditCardNumber in the same manner as above to allow your authenticated

users to work with the actual credit card number. The tweak value must be identical to

the value used by encryptCreditCardNumber to successfully decrypt.

This method will also confirm the accuracy of the credit card number with the Luhn

checksum. An exception is thrown if the entered number does not match.

Method Reference

FormatPreservingEncryption Methods

The following table contains the available methods for the FormatPreservingEncryption

class:

Method Description Parameters

decryptAccountNumber Decrypts ASCII digits within the string,
replacing each digit with another digit.
Characters outside this range will not
be decrypted.

value - String containing

data to decrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

decryptAlphanumeric Decrypts the ASCII uppercase,
lowercase and digits within the string
replacing each character with another
from one of these ranges. For
example an uppercase letter could be
replaced with an uppercase character,
lowercase character or a digit.
Characters outside this range will not
be decrypted.

value - String containing

data to decrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

decryptCreditCardNumber Decrypts the ASCII digits within the
string that represents a credit card
number. This function will verify the
Luhn checksum prior to decrypting the
credit card number. Characters
outside this range will not be
decrypted.

value - String containing

data to decrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

decryptInt32 Decrypts the specified 32-bit integer
within a specified range

OR

Decrypts the specified 32-bit integer
within the range of 0 and
Integer.MAX_VALUE. The range can
be between 1 and 2 ^ 31.

value - String containing

data to decrypt

min - Minimum value

max - Maximum value

tweak - The encryption

tweak, this value should be
changed for each record or
field

decryptInt64

Decrypts the specified 64-bit integer
within a specified range

OR

Decrypts the specified 64-bit integer
within the range of 0 and
Integer.MAX_VALUE. The range can
be between 1 and 2 ^ 63.

value - String containing

data to decrypt

min - Minimum value

max - Maximum value

tweak - The encryption

tweak, this value should be
changed for each record or
field

decryptPrintableASCII Decrypts the printable ASCII
characters (values 9, 32 - 126) within
the string. Each character within this
range will be decrypted and replaced
by another character in that same
range.

value - String containing

data to decrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

decryptSocialSecurityNumber Decrypts the ASCII digits of the Social
Security Number (SSN) within the
string, replacing each digit with
another digit. Characters outside this
range will not be decrypted.

value - String containing

data to decrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

Method Description Parameters

decryptString Decrypt the specified value using an
array of classifiers to determine which
characters in the string should be
decrypted.

value - The string

containing the data to
decrypt.

tweak - The encryption

tweak, this value should be
changed for each record or
field.

classifierList - Array

of classifiers

decryptUpperLowerDigits

Decrypts the ASCII uppercase,
lowercase and digits within the string
replacing each character with another
of the same type. For example
uppercase letters will be replaced with
uppercase letters and digits will be
replaced with digits. Characters
outside this range will not be
decrypted.

value - String containing

data to decrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

encryptAccountNumber

Encrypts the ASCII digits within the
string, replacing each digit with
another digit. Characters outside this
range will not be encrypted.

value - String containing

data to encrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

encryptAlphanumeric

Encrypts the ASCII uppercase,
lowercase and digits within the string
replacing each character with another
from one of those ranges. For
example an uppercase letter could be
replaced with an uppercase character,
lowercase character or a digit.
Characters outside this range will not
be encrypted.

value - String containing

data to encrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

encryptCreditCardNumber Encrypts the ASCII digits within the
string that represents a credit card
number. This function will verify the
Luhn checksum prior to encrypting the
credit card number and will produce
an encrypted value with a valid Luhn
checksum. Characters outside this
range will not be encrypted.

value - String containing

data to encrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

encryptInt32 Encrypts the specified 32-bit integer
within a specified range

OR

Encrypts the specified 32-bit integer
within the range of 0 and
Integer.MAX_VALUE. The range can
be between 1 and 2 ^ 31.

value - String containing

data to encrypt

min - Minimum value

max - Maximum value

tweak - The encryption

tweak, this value should be
changed for each record or
field

Method Description Parameters

encryptInt64

Encrypts the specified 64-bit integer
within a specified range

OR

Encrypts the specified 64-bit integer
within the range of 0 and
Integer.MAX_VALUE. The range can
be between 1 and 2 ^ 63.

value - String containing

data to encrypt

min - Minimum value

max - Maximum value

tweak - The encryption

tweak, this value should be
changed for each record or
field

encryptPrintableASCII Encrypts the printable ASCII
characters (values 9, 32 - 126) within
the string. Each character within this
range will be encrypted and replaced
by another character in that same
range.

value - String containing

data to encrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

encryptSocialSecurityNumber Encrypts the ASCII digits of the Social
Security Number (SSN) within the
string, replacing each digit with
another digit. Characters outside this
range will not be encrypted.

value - String containing

data to encrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

encryptString Encrypt the specified value using an
array of classifiers to determine which
characters in the string should be
encrypted.

value - The string

containing the data to
encrypt.

tweak - The encryption

tweak, this value should be
changed for each record or
field.

classifierList - Array

of classifiers

encryptUpperLowerDigits

Encrypts the ASCII uppercase,
lowercase and digits within the string
replacing each character with another
of the same type. For example
uppercase letters will be replaced with
uppercase letters and digits will be
replaced with digits. Characters
outside this range will not be
encrypted.

value - String containing

data to encrypt

tweak - The encryption

tweak, this value should be
changed for each record or
field

Classifier Interface Methods

In FormatPreservingEncryption, each character of the string is examined to see if it

should be changed, and what family of characters it belongs to. This phase is performed

by character classifier objects which implement a specific interface called the Classifier

interface. In C# it is called IClassifier, following the naming conventions of .NET. In Java,

the interface is called Classifier. In C++, there are no interfaces, but the abstract base

class is called Classifier.

The following table contains the available methods for the Classifier Interface:

Method Description Parameters

getModulus Returns the total number of possible elements in
the set of characters to be encrypted.

Method Description Parameters

Index Return the position of the character within the set
of possible elements or -1 if the character is not in
the set.

ch - Character to be classified

Restore Returns the character for the specified position
within the set of possible characters

pos - Character position within the

set

Creating and Verifying Digital Signatures: A Guide for .NET and C++
Developers

Use the Smart Encryption API to create and verify X.509 digital signatures using the

Cryptographic Message Syntax (CMS, also known as the PKCS#7 standard) or XML files

(detached or enveloped).

.NET/C# Method Reference: PKArchive.Net

Method Description Parameters

virtual void addSigner

(PKWARE::ArchiveAPI::IPKCertificate^ cert)

Add signer to the list.

SHA-1 hash algorithm
used.

For XML enveloped
signatures, only one
signer.

cert - Signer certificate with

private key

virtual void addSigner

(PKWARE::ArchiveAPI::IPKCertificate^ cert
PKWARE::ArchiveAPI::PK_HASH_ALG alg)

Add signer to the list
with a specified hash
algorithm.

For XML enveloped
signatures, only one
signer.

cert - Signer certificate with

private key

alg - Hash algorithm to use

PKWARE::ArchiveAPI::IPKCertificateCollection^
Store

Certificates associated
with signature

virtual Signer ^ GetSigner (UInt32 idx) Returns specified
signer

idx - Signer index

UInt32 SignerCount Returns number of
signers

virtual array<Byte> ^ Sign Creates CMS/PKCS#7
detached, XML
enveloped or XML
detached signature

data - Data to sign. For XML

enveloped signatures this
must be UTF-8 string (such
as the output of
Encoding.UTF8.GetBytes()).
This implementation does not
resolve external URI, so the
data to sign must be provided
even for detached XML
signatures.

uri - Universal Resource

Identifier used only for XML
detached signatures.

flags - Flag that indicates

type of signature to create

pinStream - Stream to sign.

Must contain UTF-8 XML for
XML enveloped signatures.
In XML signatures, this
stream will rewind to its initial
position. This implementation

Method Description Parameters

does not resolve external
URIs, so data to sign must be
provided (even for detached
XML signatures)

pOutStream - Stream where

signature will be written. For
XML signatures, this is UTF-8
XML.

virtual Boolean Verify Verifies CMS/PKCS#7
detached or XML
enveloped or detached
signature. Signer
information loaded.
Signer certificate is not
validated.

data - Pointer to data to

verify. Not used for XML
enveloped signatures. This
implementation does not
resolve external URIs, so
data to verify must be
provided for detached XML
signatures

signature - signature. For

XML enveloped signatures,
this must be UTF-8 XML
string (such as the output of
Encoding.UTF8.GetBytes()).

flags - Indicates type of

signature (sign, encrypt,
both) to verify.

pinStream - Stream to

verify. Not used for XML
enveloped signatures. In
detached XML signatures,
this stream will rewind to its
initial position. This
implementation does not
resolve external URIs, so
data to sign must be provided
for detached XML signatures.

pSignature - Stream that

contains signature data. For
XML enveloped or detached
signatures, this must be UTF-
8 XML.

C++ Method Reference: PKSignVerify

Method Description Parameters

Virtual PKBOOL
PKSignVerify::add Signer

Add signer to the list.

For XML enveloped signatures, only
one signer.

pCert - Signer certificate

(w/private key)

hashAlgID - Hash algorithm

to use

Virtual PKCertificateStorePtr
PKSignVerify::getCertificateStore

Returns certificate store associated
with signature.

virtual PKCertificatePtr
PKSignVerify::getSigner

Returns signer information idx - Signer index

pHashAlgID - Returns the

signer’s associated hash
algorithm if not NULL

pStatus - Returns the

signer’s status if not NULL

virtual PKUINT32
PKSignVerify::getSignerCount

Returns number of signers

Method Description Parameters

virtual void PKSignVerify::sign Creates CMS/PKCS#7 detached,
XML enveloped or XML detached
signature

pbin - Pointer to data to sign,

cannot be NULL. For XML
enveloped signatures this
must be UTF-8 XML string.
This implementation does not
resolve external URI, so the
data to sign must be provided
even for detached XML
signatures.

cbin - Size of the data to

sign. For XML enveloped
signature this must be the
length of the XML string not
counting terminating '\0'

signature - Returned

signature. For XML signatures
this is UTF-8 XML string
without terminating '\0'

szURI - Universal Resource

Identifier used only for XML
detached signatures.

flags - Flag that indicates

type of signature to create

pinStream - Stream to sign

(cannot be NULL). Must
contain UTF-8 XML for XML
enveloped signatures. In XML
signatures, this stream will
rewind to its initial position.
This implementation does not
resolve external URIs, so data
to sign must be provided
(even for detached XML
signatures)

pOutStream - Stream where

signature will be written,
cannot be NULL. For XML
signatures, this is UTF-8 XML.

Method Description Parameters

Virtual PKBOOL
PKSignVerify::verify

Verifies CMS/PKCS#7 detached or
XML enveloped or detached
signature. Signer information loaded.
Signer certificate is not validated.

pbin - Pointer to data to

verify. Not used for XML
enveloped signatures. This
implementation does not
resolve external URIs, so data
to verify must be provided for
detached XML signatures

cbin - Size of the data to

verify. Not used for XML
enveloped signatures.

pbSignature - Pointer to

signature, cannot be NULL.
For XML enveloped
signatures, this must be UTF-
8 XML string.

cbSignature - Size of the

signature. For XML signature,
this must be the length of the
XML string, not counting the
terminating ‘\0’.

Flags - Indicates type of

signature (sign, encrypt, both)
to verify.

pinStream - Stream to verify.

Not used for XML enveloped
signatures. In XML signatures,
this stream will rewind to its
initial position. This
implementation does not
resolve external URIs, so data
to sign must be provided
(even for detached XML
signatures).

pSignature - Stream that

contains signature data,
cannot be NULL. For XML
enveloped signatures, this
must be UTF-8 XML.

Creating and Verifying Digital Signatures: A Guide for Java
Developers

Use the Smart Encryption API to create and verify X.509 digital signatures using the

Cryptographic Message Syntax (CMS, also known as the PKCS#7 standard) or XML files

(detached or enveloped).

Method Reference: Java

Method Description Parameters

addSigner

(CMS and XML Detached)

Add signer and associated private key
that will be used to sign the data.

SHA-1 hash algorithm used.

For XML enveloped signatures, only
one signer.

certificate - X.509 certificate

associated with the signature

privateKey - Private key that

corresponds to the X.509
certificate

hashID - Hash algorithm to use

certificateChain - Optional

certificate chain to verify the X.509
certificate

setSigner

(XML Enveloped)

Add signer and associated private key
that will be used to sign the data.

For XML enveloped signatures, only
one signer.

certificate - X.509 certificate

associated with the signature

privateKey - Private key that

corresponds to the X.509
certificate

hashID - Hash algorithm to use,

possible values are:
ArchiveEntry.HASH_SHA1,

ArchiveEntry.HASH_SHA_256,

ArchiveEntry.HASH_SHA_384

and
ArchiveEntry.HASH_SHA_512

certificateChain - Optional

certificate chain to verify the X.509
certificate

getSignerCount

(CMS and XML Detached)

Returns number of signers

getSigner

(CMS and XML Detached)

Returns signer at the specified
position

idx - index position within the

signer array

getCertificates Additional X.5090 certificates
associated with the CMS signature

sign

(XML Detached)

Create a detached XML signature for
the item identified by the URI

baseUri - Base URI for

verifying the URI within the
detached XML signature. For a
file-based URI, this will be a folder
where the source file is located; in
the form “file://folder/”.

uri - zthe item to sign, typically a

file or HTTP(S) address.

sign

(XML Enveloped)

public byte[] sign(byte[] data)

Create an enveloped XML signature
for the supplied XML data byte array.

public byte[]
sign(java.io.InputStream
inputStream)

Create an enveloped XML signature
for the supplied XML data stream

data - Input byte array with the

XML to sign

inputStream - Input data stream

with the XML to sign

signData Create CMS detached signature for
the byte array

data - Byte array to sign

signFile Create CMS detached signature for
the specified file

file - The file to sign

file:///C:/Users/Mike_m/Documents/Field%20Level%20Encryption/JavaSDK106/doc/com/pkware/archive/ArchiveEntry.html%23HASH_SHA1
file:///C:/Users/Mike_m/Documents/Field%20Level%20Encryption/JavaSDK106/doc/com/pkware/archive/ArchiveEntry.html%23HASH_SHA_256
file:///C:/Users/Mike_m/Documents/Field%20Level%20Encryption/JavaSDK106/doc/com/pkware/archive/ArchiveEntry.html%23HASH_SHA_384
file:///C:/Users/Mike_m/Documents/Field%20Level%20Encryption/JavaSDK106/doc/com/pkware/archive/ArchiveEntry.html%23HASH_SHA_512
file://///folder

Method Description Parameters

signStream Create CMS signed output stream that
will create CMS signature for data as
it is written to the returned stream

signatureStream - Output

stream that will hold the detached
signature

verify

(XMLVerifyDetached)

public boolean
verify(java.lang.String baseUri,

 byte[] data)

Verify the detached XML signature
within the byte array

public boolean
verify(java.lang.String baseUri,

 java.io.InputStream
inputStream)

Verify the detached XML signature
within the input stream

baseUri - Base URI for

verifying the URI within the
detached XML signature. For a
file-based URI, this will be a folder
where the source file is located; in
the form “file://folder/”.

data - Input byte array with the

XML to verify

inputStream - Input data stream

with the XML to verify

verify

(XMLVerifyEnveloped)

public boolean verify(byte[]
data)

Verify the detached XML signature
within the byte array

public boolean
verify(java.io.InputStream
inputStream)

Verify the detached XML signature
within the input stream

baseUri - Base URI for

verifying the URI within the
detached XML signature. For a
file-based URI, this will be a folder
where the source file is located; in
the form “file://folder/”.

data - Input byte array with the

XML to verify

inputStream - Input data stream

with the XML to verify

verifyData

(CMS verify)

Verify the CMS signature on a byte
array

data - The data that was originally

signed

signature - The CMS detached

signature

verifyFIle

(CMS verify)

Verify the CMS signature on a file dataFile - The data file that was

originally signed

signature - The CMS detached

signature

Glossary of Cryptographic Terms

Advanced Encryption Standard (AES): The official US Government encryption

standard for customer data. This algorithm requires one of three key strengths: 128-bit,

192-bit, or 256-bit.

Format Preserving Encryption (FPE): Encrypting a set of data so that the encrypted

output appears in the same format as the original, plaintext data.

Luhn checksum: A formula commonly used to confirm that a user typed a credit card,

identification, or other account number correctly into a form. The formula verifies a

number against its included check digit, which is usually appended to a partial account

number to generate the full account number.

User Help and Contact Information

For licensing, please contact Sales at 937-847-2374 (888-4PKWARE / 888-475-9273) or

email pksales@pkware.com.

For technical assistance, contact Technical Support at 937-847-2687 or visit the support

web site: https://www.pkware.com/support.

file://///folder
file://///folder
mailto:pksales@pkware.com
https://www.pkware.com/support

